In this practical, we will learn about nonlinear extensions to regression using basis functions and how to create, visualise, and interpret them. Parts of it are adapted from the practicals in ISLR chapter 7.
One of the packages we are going to use is splines
. For
this, you will probably need to install.packages("splines")
before running the library()
functions.
library(MASS)
library(splines)
library(ISLR)
library(tidyverse)
First, we specify a seed as usual.
set.seed(45)
Median housing prices in Boston do not have a linear relation with the proportion of low SES households. Today we are going to focus exclusively on prediction.
Boston %>%
ggplot(aes(x = lstat, y = medv)) +
geom_point() +
theme_minimal()
First, we need a way of visualising the predictions.
pred_plot()
that takes
as input an lm
object, which outputs the above plot but
with a prediction line generated from the model object using the
predict()
method.lin_mod
which models medv
as a function of
lstat
. Check if your prediction plot works by running
pred_plot(lin_mod)
. Do you see anything out of the ordinary
with the predictions?The first extension to linear regression is polynomial regression, with basis functions \(b_j(x_i) = x_i^j\) (ISLR, p. 270).
pn3_mod
, where you
add the second and third-degree polynomial terms I(lstat^2)
and I(lstat^3)
to the formula. Create a
pred_plot()
with this model.The function poly()
can automatically generate a matrix
which contains columns with polynomial basis function outputs.
degree = 3
and
raw = TRUE
?medv
using lstat
. Compare the prediction plot to the previous
prediction plot you made. What happens if you change the poly() function
to raw = FALSE
?Another basis function we can use is a step function. For example, we
can split the lstat
variable into two groups based on its
median and take the average of these groups to predict
medv
.
pw2_mod
with one
predictor: I(lstat <= median(lstat))
. Create a pred_plot
with this model. Use the coefficients in coef(pw2_mod)
to
find out what the predicted value for a low-lstat neighbourhood
is.cut()
function in the formula to
generate a piecewise regression model called pw5_mod
that
contains 5 equally spaced sections. Again, plot the result using
pred_plot
.Note that the sections generated by cut()
are equally
spaced in terms of lstat
, but they do not have equal
amounts of data. In fact, the last section has only 9 data points to
work with:
table(cut(Boston$lstat, 5))
##
## (1.69,8.98] (8.98,16.2] (16.2,23.5] (23.5,30.7] (30.7,38]
## 183 183 94 37 9
pwq_mod
where the sections are not equally spaced, but have
equal amounts of training data. Hint: use the quantile()
function.Combining piecewise regression with polynomial regression, we can write a function that creates a matrix based on a piecewise cubic basis function:
piecewise_cubic_basis <- function(vec, knots = 1) {
if (knots == 0) return(poly(vec, degree = 3, raw = TRUE))
cut_vec <- cut(vec, breaks = knots + 1)
out <- matrix(nrow = length(vec), ncol = 0)
for (lvl in levels(cut_vec)) {
tmp <- vec
tmp[cut_vec != lvl] <- 0
out <- cbind(out, poly(tmp, degree = 3, raw = TRUE))
}
out
}
vec
and
knots
variables, for example vec <- 1:20
and knots <- 2
and try out the lines
separately.pc1_mod
- pc3_mod
) using this piecewise cubic
basis function. Compare them using the pred_plot()
function.We’re now going to take out the discontinuities from the piecewise cubic models by creating splines. First, we will manually create a cubic spline with 1 knot at the median by constructing a truncated power basis as per ISLR page 273, equation 7.10.
boston_tpb
with the
columns medv
and lstat
from the
Boston
dataset.mutate
to add squared and cubed
versions of the lstat
variable to this
dataset.mutate
to add a column
lstat_tpb
to this dataset which is 0 below the median and
has value (lstat - median(lstat))^3
above the median. Tip:
you may want to use ifelse()
within your
mutate()
call.Now we have created a complete truncated power basis for a cubic spline fit.
tpb_mod
using the
lm()
function. How many predictors are in the model? How
many degrees of freedom does this model have?The bs()
function from the splines
package
does all the work for us that we have done in one function call.
bs1_mod
with a knot
at the median using the bs()
function. Compare its
predictions to those of the tpb_mod
using the
predict()
function on both models.bs1_mod
object using the plot_pred()
function.Note that this line fits very well, but at the right end of the plot, the curve slopes up. Theoretically, this is unexpected – always pay attention to which predictions you are making and whether that behaviour is in line with your expectations.
The last extension we will look at is the natural spline. This works
in the same way as the cubic spline, with the additional constraint that
the function is required to be linear at the boundaries. The
ns()
function from the splines
package is for
generating the basis representation for a natural spline.
ns3_mod
)
with 3 degrees of freedom using the ns()
function. Plot it,
and compare it to the bs1_mod
.lin_mod
, pn3_mod
,
pw5_mod
, pc3_mod
, bs1_mod
, and
ns3_mod
and give them nice titles by adding
+ ggtitle("My title")
to the plot. You may use the function
plot_grid()
from the package cowplot
to put
your plots in a grid.lin
, pn3
, pw5
,
pc3
, bs1
, and ns3
) has the lowest
out-of-sample MSE.When you have finished the practical,
enclose all files of the project (i.e. all .R
and/or
.Rmd
files including the one with your answers, and the
.Rproj
file) in a zip file, and
hand in the zip here. Do so before next week’s lecture.